Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 17120-17128, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554083

RESUMO

Cell-based therapies offer tremendous potential for skin flap regeneration. However, the hostile microenvironment of the injured tissue adversely affects the longevity and paracrine effects of the implanted cells, severely reducing their therapeutic effectiveness. Here, an injectable hydrogel (nGk) with reactive oxygen species (ROS) scavenging capability, which can amplify the cell viability and functions of encapsulated mesenchymal stem cells (MSCs), is employed to promote skin flap repair. nGk is formulated by dispersing manganese dioxide nanoparticles (MnO2 NPs) in a gelatin/κ-carrageenan hydrogel, which exhibits satisfactory injectable properties and undergoes a sol-gel phase transition at around 40 °C, leading to the formation of a solid gel at physiological temperature. MnO2 NPs enhance the mechanical properties of the hydrogel and give it the ability to scavenge ROS, thus providing a cell-protective system for MSCs. Cell culture studies show that nGk can mitigate the oxidative stress, improve cell viability, and boost stem cell paracrine function to promote angiogenesis. Furthermore, MSC-loaded nGk (nGk@MSCs) can improve the survival of skin flaps by promoting angiogenesis, reducing inflammatory reactions, and attenuating necrosis, providing an effective approach for tissue regeneration. Collectively, injectable nGk has substantial potential to enhance the therapeutic benefits of MSCs, making it a valuable delivery system for cell-based therapies.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Compostos de Manganês/farmacologia , Óxidos/farmacologia
2.
Adv Sci (Weinh) ; 11(14): e2307338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342630

RESUMO

The severity of osteoarthritis (OA) and cartilage degeneration is highly associated with synovial inflammation. Although recent investigations have revealed a dysregulated crosstalk between fibroblast-like synoviocytes (FLSs) and macrophages in the pathogenesis of synovitis, limited knowledge is available regarding the involvement of exosomes. Here, increased exosome secretion is observed in FLSs from OA patients. Notably, internalization of inflammatory FLS-derived exosomes (inf-exo) can enhance the M1 polarization of macrophages, which further induces an OA-like phenotype in co-cultured chondrocytes. Intra-articular injection of inf-exo induces synovitis and exacerbates OA progression in murine models. In addition, it is demonstrated that inf-exo stimulation triggers the activation of glycolysis. Inhibition of glycolysis using 2-DG successfully attenuates excessive M1 polarization triggered by inf-exo. Mechanistically, HIF1A is identified as the determinant transcription factor, inhibition of which, both pharmacologically or genetically, relieves macrophage inflammation triggered by inf-exo-induced hyperglycolysis. Furthermore, in vivo administration of an HIF1A inhibitor alleviates experimental OA. The results provide novel insights into the involvement of FLS-derived exosomes in OA pathogenesis, suggesting that inf-exo-induced macrophage dysfunction represents an attractive target for OA therapy.


Assuntos
Exossomos , Osteoartrite , Sinoviócitos , Sinovite , Humanos , Camundongos , Animais , Sinoviócitos/patologia , Sinoviócitos/fisiologia , Células Cultivadas , Inflamação , Sinovite/patologia , Fibroblastos/patologia , Macrófagos/patologia , Glicólise
3.
Small ; : e2306598, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295133

RESUMO

Postoperative adhesion is a noteworthy clinical complication in abdominal surgery due to the existing physical barriers are unsatisfactory and inefficient in preventing its occurrence. In this work, an elaborate nanoparticle-in-microgel system (nMGel) is presented for postoperative adhesion prevention. nMGel is facilely formed by crosslinking manganese dioxide (MnO2 ) nanoparticles-loaded gelatin microspheres with polydopamine using a modified emulsification-chemical crosslinking method, generating a nano-micron spherical hydrogel. After drying, powdery nMGel with sprayability can perfectly cover irregular wounds and maintains robust tissue adhesiveness even in a wet environment. Additionally, nMGel possesses prominent antioxidant and free radical scavenging activity, which protects cell viability and preserves cell biological functions in an oxidative microenvironment. Furthermore, nMGel displays superior hemostatic property as demonstrated in mouse tail amputation models and liver trauma models. Importantly, nMGel can be conveniently administrated in a mouse cecal defect model to prevent adhesion between the injured cecum and the peritoneum by reducing inflammation, oxidative stress, collagen synthesis, and angiogenesis. Thus, the bioactive nMGel offers a practical and efficient approach for ameliorating postsurgical adhesion.

4.
ACS Appl Mater Interfaces ; 16(6): 6868-6878, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294964

RESUMO

Osteosarcoma (OS) is considered the most frequent type of primary malignant bone tumor. Currently, radiotherapy, photodynamic (PDT), and other therapies for osteosarcoma are limited by tumor hypoxia and single efficacy and serve side-effects. Herein, we reported a microalgal drug delivery system (SpiD), doxorubicin (DOX)-loaded Spirulina platensis (Spi) for OS therapy. The specific surface of Spirulina platensis allowed for effective loading of DOX via surface channels and electrostatic interactions. Under 650 nm laser irradiation, SpiD enabled high oxygen production by photosynthesis and enhanced reactive oxygen species (ROS) generation via chlorophyll-assisted photosensitization, synergistically killing tumor cells with the released DOX. Combined chemotherapy and enhanced PDT mediated by SpiD exerted synergic antitumor effects and resulted in potent therapeutic efficacy in orthotopic osteosarcoma mice. Furthermore, SpiD could reduce the side-effects of chemotherapy, showing excellent blood and tissue safety. Taken together, this microalgal drug delivery system provided a natural, efficient, safe, and inexpensive strategy for OS treatment.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Fotoquimioterapia , Spirulina , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Osteossarcoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral
5.
ACS Biomater Sci Eng ; 10(2): 1031-1039, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215215

RESUMO

Surgical bleeding and cumulative oxidative stress are significant factors in the development of postoperative adhesions, which are always associated with adverse patient outcomes. However, effective strategies for adhesion prevention are currently lacking in clinical practice. In this study, we propose a solution using polydopamine-decorated manganese dioxide nanoparticles (MnO2@PDA) with rapid hemostasis and remarkable antioxidant properties to prevent postsurgical adhesion. The PDA modification provides MnO2@PDA with enhanced tissue adhesiveness and hemocompatibility with negligible hemolysis. Furthermore, MnO2@PDA exhibits impressive antioxidant and free radical scavenging properties, protecting cells from the negative effects of oxidative stress. The hemostatic activity of MnO2@PDA is evaluated in a mouse truncated tail model and a liver injury model, with results demonstrating reduced bleeding time and volume. The in vivo test on a mouse cecal abrasion model shows that MnO2@PDA exhibits excellent antiadhesion properties coupled with alleviated inflammation around the damaged tissue. Therefore, MnO2@PDA, which exhibits high biosafety, rapid hemostasis, and beneficial antioxidant capacity, displays exceptional antiadhesion performance, holding great potential for clinical applications to prevent postoperative adhesion.


Assuntos
Antioxidantes , Indóis , Nanopartículas , Polímeros , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Compostos de Manganês/farmacologia , Contenção de Riscos Biológicos , Óxidos/farmacologia , Hemostasia
6.
Exp Mol Med ; 56(1): 156-167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172596

RESUMO

Osteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (m6A) modification may have an important role in OA pathogenesis. This study aimed to investigate the role of m6A writers and the underlying mechanisms in osteoarthritic cartilage. Among m6A methyltransferases, Wilms tumor 1-associated protein (WTAP) expression most significantly differed in clinical osteoarthritic cartilage. WTAP regulated extracellular matrix (ECM) degradation, inflammation and antioxidation in human chondrocytes. Mechanistically, the m6A modification and relative downstream targets in osteoarthritic cartilage were assessed by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing, which indicated that the expression of frizzled-related protein (FRZB), a secreted Wnt antagonist, was abnormally decreased and accompanied by high m6A modification in osteoarthritic cartilage. In vitro dysregulated WTAP had positive effects on ß-catenin expression by targeting FRZB, which finally contributed to the cartilage injury phenotype in chondrocytes. Intra-articular injection of adeno-associated virus-WTAP alleviated OA progression in a mouse model, while this protective effect could be reversed by the application of a Wnt/ß-catenin activator. In summary, this study revealed that WTAP-dependent RNA m6A modification contributed to Wnt/ß-catenin pathway activation and OA progression through post-transcriptional regulation of FRZB mRNA, thus providing a potentially effective therapeutic strategy for OA treatment.


Assuntos
Osteoartrite , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Cartilagem/metabolismo , Proteínas de Ciclo Celular/metabolismo , Condrócitos/metabolismo , Osteoartrite/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Via de Sinalização Wnt/fisiologia
7.
Biomed J ; : 100651, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37562773

RESUMO

BACKGROUND: Dysregulation of long non-coding RNAs (lncRNAs) is an important component of tumorigenesis. Aberrant expression of lncRNA taurine upregulated gene 1 (lncTUG1) has been reported in various tumors; however, its precise role and key targets critically involved in osteosarcoma (OS) progression remains unclear. METHODS: The expression profiles of lncRNAs and its regulated miRNAs related to OS progression were assessed by bioinformatics analysis and confirmed by qRT-PCR of OS cells. The miRNA targets were identified by transcriptome sequencing and verified by luciferase reporter and RNA pull-down assays. Several in vivo and in vitro approaches, including CCK8 assay, western blot, qRT-PCR, lentiviral transduction and OS cell xenograft mouse model were established to validate the effects of lncTUG1 regulation of miRNA and the downstream target genes on OS cell growth, apoptosis and progression. RESULTS: We found that lncTUG1 and miR-26a-5p were inversely up or down-regulated in OS cells, and siRNA-mediated lncTUG1 knockdown reversed the miR-26a-5p down-regulation and suppressed proliferation and enhanced apoptosis of OS cells. Further, we identified that an oncoprotein ZBTB7C was also upregulated in OS cells that were subjected to lncTUG1/miR-26a-5p regulation. More importantly, ZBTB7C knockdown reduced the ZBTB7C upregulation and ZBTB7C overexpression diminished the anti-OS effects of lncTUG1 knockdown in the OS xenograft model. CONCLUSIONS: Our data suggest that lncTUG1 acts as a miR-26a-5p sponge and promotes OS progression via up-regulating ZBTB7C, and targeting lncTUG1 might be an effective strategy to treat OS.

8.
Transl Res ; 259: 62-71, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37121538

RESUMO

Aberrant N6-methyladenosine (m6A) modification of mRNAs contributes significantly to the epigenetic tumorigenesis, however, its precise role and the key targets in osteosarcoma (OS) are not defined. Here we reported that selective METTL3 (methyltransferase like 3) elevation and the consequential increase of m6A modification causally affect OS progression. The fast-growing OS cells displayed preferential upregulation of METTL3 and increased m6A modification. Conversely, m6A inhibition by 3-deazaadenosine, siRNA-mediated METTL3 knockdown or a METTL3-selective inhibitor STM2457 effectively inhibits OS cell growth and induced OS cell apoptosis. Further investigation revealed that an oncogenic protein ZBTB7C was likely a critical m6A target that mediated the oncogenic effects. ZBTB7C mRNA contains a typical m6A motif of high confidence and its mRNA and protein were enriched with increased m6A modification in OS samples/cells. In an OS xenograft model, STM2457 or siRNA-mediated METTL3 knockdown effectively lowed ZBTB7C abundance. More importantly, the anti-OS effects of STM2457 were significantly reduced when ZBTB7C was overexpressed by lentivirus. Together, our results demonstrate that the METTL3 aberration and the resultant ZBTB7C m6A modification form an important epigenetic regulatory loop that promotes OS progression, and targeting the METTL3/ZBTB7C axis may provide novel insights into the potential strategies for OS therapy.


Assuntos
Metiltransferases , Osteossarcoma , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metiltransferases/genética , Metiltransferases/metabolismo , Osteossarcoma/genética , RNA Mensageiro/genética , RNA Interferente Pequeno
9.
Adv Healthc Mater ; 11(13): e2200246, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35485302

RESUMO

Mesenchymal stem cell (MSC) aggregates incorporated with microparticles of functional materials have shown promising prospects in the field of cell therapy for cartilage repair. Given the importance of cadherins in modulating the stemness and chondrogenesis of MSCs, the use of transforming growth factor ß1 (TGFß1)-loaded poly (lactic-co-glycolic acid) (PLGA)-based composite microparticles inspired by duo cadherin (human E- and N-cadherin fusion proteins) to construct a bioartificial stem cell niche in engineered human MSC (hMSC) aggregates to promote chondrogenesis and cartilage regeneration is proposed. The hE/N-cadherin-functionalized PLGA/chitosan-heparin-TGFß1 (Duo hE/N-cad@P/C-h-TGFß1) microparticles spatiotemporally upregulates the endogenous E/N-cadherin expression of hMSC aggregates which further amplifies the chondrogenic differentiation and modulate paracrine and anti-inflammatory functions of hMSCs toward constructing a favorable microenvironment for chondrogenesis. The Duo hE/N-cad@P/C-h-TGFß1 microparticles finely regulate the response of hMSCs to biochemical and mechanical signal stimuli in the microenvironment through the cadherin/catenin-Yes-associated protein signal transduction, which inhibits the hypertrophy of hMSC-derived chondrocytes. Furthermore, immunofluorescent and histological examinations show that the Duo hE/N-cad@P/C-h-TGFß1 microparticles significantly improve regeneration of cartilage and subchondral bone in vivo. Together, the application of duo cadherin-functionalized microparticles is considered an innovative material-wise approach to exogenously activate hMSC aggregates for functional applications in regenerative medicine.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Caderinas/metabolismo , Cartilagem/metabolismo , Diferenciação Celular/fisiologia , Humanos
10.
ACS Appl Bio Mater ; 5(5): 1831-1838, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35014833

RESUMO

Serious lung diseases and other health problems caused by tobacco consumption are becoming more and more prominent all over the world. Scavenging the excessive harmful free radicals in cigarette smoke is proven to be an effective method in reducing the above problems. Carbon-based nanozymes have been widely studied due to their ability of scavenging free radicals. Accordingly, the biochar derived from silkworm excrement was reported as a nanozyme with free radical scavenging ability. The biochar nanozyme calcination at 900 °C with better free radical scavenging abilities was loaded into commercial cigarette filters for the following free radical scavenging verification in tobacco smoke. Mouse model results reveal the lung tissue could be improved by the addition of biochar nanozyme. This work not only provides an effective approach to reduce the harm caused by tobacco but also provides potential applications to rationally realize low-cost, ease of production, and a wide variety of biochar sources.


Assuntos
Bombyx , Fumar Cigarros , Animais , Carvão Vegetal , Radicais Livres , Camundongos
11.
Front Bioeng Biotechnol ; 9: 807625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970536

RESUMO

Ball milling technology is the classical technology to isolate representative lignin in the cell wall of biomass for further investigation. In this work, different ball milling times were carried out on hardwood (poplar sawdust), softwood (larch sawdust), and gramineous material (bamboo residues) to understand the optimum condition to isolate the representative milled wood lignin (MWL) in these different biomass species. Results showed that prolonging ball milling time from 3 to 7 h obviously increased the isolation yields of MWL in bamboo residues (from 39.2% to 53.9%) and poplar sawdust (from 15.5% to 35.6%), while only a slight increase was found for the MWL yield of larch sawdust (from 23.4% to 25.8%). Importantly, the lignin substructure of ß-O-4 in the MWL samples from different biomasses can be a little degraded with the increasing ball milling time, resulting in the prepared MWL with lower molecular weight and higher content of hydroxyl groups. Based on the isolation yield and structure features, milling time with 3 and 7 h were sufficient to isolate the representative lignin (with yield over 30%) in the cell wall of bamboo residues and poplar sawdust, respectively, while more than 7 h should be carried out to isolate the representative lignin in larch sawdust.

12.
Front Pharmacol ; 12: 727808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658868

RESUMO

As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug-disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug-disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.

13.
J Mater Chem B ; 9(35): 7238-7245, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34095923

RESUMO

Ceria (CeO2) nanozymes have drawn much attention in recent years due to their unique physiochemical properties and excellent biocompatibility. It is therefore very important to establish a simple and robust guideline to regulate CeO2 with desired multi-enzyme-mimicking activities that are ideal for practical bioapplications. In this work, the multi-enzyme-mimicking activities of CeO2 were regulated in a facile manner by a wet-chemical method with different synthesis temperatures. Interestingly, a distinct response in multi-enzyme-mimicking activities of CeO2 was observed towards different synthesis temperatures. And the regulation was ascribed to the comprehensive effect of the oxygen species, size, and self-restoring abilities of CeO2. This study demonstrates that high-performance CeO2 can be rationally designed by a specific synthesis temperature, and the guidelines from radar chart analysis established here can advance the biomedical applications of ceria-based nanozymes.


Assuntos
Materiais Biocompatíveis/química , Cério/química , Temperatura , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cério/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Células MCF-7 , Teste de Materiais , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula
14.
Nanoscale ; 12(25): 13801-13810, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32573588

RESUMO

Lactic acidosis is one of the key characteristics of the tumor microenvironment (TME), and plays a critical role in therapy resistance, making it an attractive target for enhancing anticancer treatment. However, no effective systems exhibit the ability to selectively neutralize tumor lactic acidosis in a controlled manner. Here, we have developed novel ultrasound-responsive alkaline nanorobots (AN-DSP), composed of PLGA nanoparticles containing doxorubicin (DOX), sodium carbonate (Na2CO3) and perfluorocarbon (PFC), for recovering from lactic acidosis-mediated drug resistance. AN-DSP exhibit sensitive response to ultrasound stimulation, and rapidly release Na2CO3 to neutralize lactic acidosis, consequently enhancing DOX susceptibility in vitro and in vivo. Particularly, our nanorobots autonomously accumulate in tumors by an enhanced permeability and retention effect, and can specifically disrupt the tumor acidic microenvironment in response to external ultrasonic powering, resulting in the inhibition of tumor growth with minimal adverse effects. Therefore, AN-DSP represent a promising approach for selectively overcoming tumor lactic acidosis induced therapeutic resistance.


Assuntos
Acidose Láctica , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
15.
Mater Sci Eng C Mater Biol Appl ; 108: 110403, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923941

RESUMO

Drug resistance is a major hindrance in the anticancer treatment, which encourages the development of effective therapeutic strategies. For the first time, MDM2-mediated p53 degradation was identified as a critical factor for developing acquired resistance of doxorubicin (DOX) in HepG2 tumor spheroids, which could be effectively reversed by MDM2 inhibitor MI-773, thereby improving anticancer effects. Therefore, a pH-sensitive liposomal formulation of DOX and MI-773 (LipD/M@CMCS) were developed for recovering p53-mediated DOX resistance in hepatocellular carcinoma. LipD/M@CMCS were composed of cationic liposomes covered with carboxymethyl chitosan (pI = 6.8), and were stable in the physiological condition (pH 7.4), but rapidly converted to cationic liposomes in tumor acidic microenvironment (pH 6.5), endowing them with tumor specificity and enhanced cellular uptake. We showed that LipD/M@CMCS could not only effectively induce cell apoptosis in HepG2 tumor spheroids, but significantly inhibit tumor growth with minimal adverse effects. In summary, selective regulation of MDM2 in cancer cells is a promising strategy to overcome DOX resistance, and may provide a perspective on the management of malignant tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Lipossomos/química , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Indóis/farmacocinética , Indóis/uso terapêutico , Lipossomos/administração & dosagem , Camundongos Nus , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacocinética , Pirrolidinas/uso terapêutico , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
RSC Med Chem ; 11(1): 148-154, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479615

RESUMO

Neuraminidase, an abundant glycoprotein on the influenza virus surface, plays crucial roles in virus replication. Targeting neuraminidase could be a splendid way for the prevention of the spread of influenza infections. Herein, we have identified an octapeptide (errKPAQP) from a synthesized peptide library, originating from mimicking the binding pocket of oseltamivir in neuraminidase, as a potent peptide neuraminidase inhibitor. The docking-based virtual studies showed that errKPAQP exhibited a strong binding affinity (a docking score of -20.03) and nanomolar affinity (11 nM) to influenza neuraminidase, and can inhibit neuraminidase activity at a concentration as low as 4.25 µM, leading to effective protection of MDCK cells from influenza virus-induced death and replication. Furthermore, errKPAQP presented low hemolytic activity, minimal cytotoxicity, and good pharmacokinetic characteristics, which are imperative for an anti-influenza drug. Importantly, errKPAQP was capable of reducing influenza virus-induced inflammation, the serious damage to the lung tissues, and mortality rates in infected mice, indicating that it could protect against the lethal challenge of influenza viruses in vivo. Therefore, we have developed a novel neuraminidase peptide inhibitor with advantageous biological properties and high inhibitory activity towards neuraminidase, and it can serve as a promising anti-influenza drug.

17.
Anal Chem ; 91(19): 12587-12595, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31496223

RESUMO

Glioblastoma is a highly malignant brain tumor with poor prognosis and survival rate because of a lack of effective diagnostic methods. Hydrocyanines are a type of reactive oxygen species (ROS)-responsive fluorescent probes, allowing for distinguishing tumor cells from normal cells based on their different intracellular levels of ROS. However, their diagnostic applications for glioblastoma have been limited because of the inability to discriminate between tumor cells and other tissues with high ROS production, leading to high false-positive diagnosis. Therefore, tumor-responsive and -specific hydrocyanines with cooperative targeting ability have great potential for improving the diagnosis and treatment of glioblastoma. Integrin αvß3 plays a critical role in the progression and angiogenesis of glioblastoma and has become a promising target for diagnosing glioblastoma. Herein, we identify a specific peptide ligand for integrin αvß3, Arg-Trp-(d-Arg)-Asn-Arg (RWrNR), which shows high binding affinity to human glioblastoma U87MG cells. Importantly, hydro-Cy5-RWrNR conjugation allowed for distinguishing U87MG cells from normal cells in response to intracellular ROS. Particularly, hydro-Cy5-RWrNR could not only selectively accumulate in orthotopic U87MG tumor with minimal background fluorescence but also effectively discriminate between glioblastoma and inflammatory tissues for the first time, leading to detection of glioblastoma in vivo with high target-to-background ratios and minimal background fluorescence. Therefore, hydro-Cy5-RWrNR is the first integrin αvß3-specific hydrocyanine probe and has great potential in precise tumor diagnosis because of its cooperative targeting of integrin αvß3 and ROS.


Assuntos
Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Glioblastoma/metabolismo , Integrina alfaVbeta3/metabolismo , Animais , Carbocianinas/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Glioblastoma/diagnóstico , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
18.
ACS Appl Mater Interfaces ; 11(38): 34663-34675, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31490654

RESUMO

Apoptotic peptide (kla), which can trigger the mitochondria-mediated apoptotic programmed cell death, has been widely recognized as a potential anticancer agent. However, its therapeutic potential has been significantly impaired by its poor biostability, lack of tumor specificity, and particularly low cellular uptake. Herein, a linear peptide Arg-Trp-d-Arg-Asn-Arg (RWrNR) was identified as an integrin αvß3 specific ligand with a nanomolar dissociation constant (Kd = 0.95 nM), which can greatly improve kla antitumor activity (IC50 = 8.81 µM) by improving its cellular uptake, compared to the classic integrin-recognition motif c-RGDyK (IC50 = 37.96 µM). Particularly, the RWrNR-kla conjugate can be entrapped in acidic sensitive nanogels (RK/Parg/CMCS-NGs), composed of poly-l-arginine (Parg) and carboxymethyl chitosan (CMCS, pI = 6.8), which can not only carry out controlled release of RWrNR-kla in response to the tumor acidic microenvironment, and consequently enhance its tumor specificity and cell internalization, but also trigger tumor-associated macrophages to generate nitric oxide, leading to enhanced synergistic anticancer efficacy. Importantly, RK/Parg/CMCS-NGs have been proven to effectively activate the apoptosis signaling pathway in vivo and significantly inhibit tumor growth with minimal adverse effects. To summarize, RK/Parg/CMCS-NGs are a promising apoptotic peptide-based therapeutics with enhanced tumor accumulation, cytosolic delivery, and synergistic anticancer effects, thereby holding great potential for the treatment of malignant tumors.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Integrina alfaVbeta3/metabolismo , Neoplasias Experimentais , Óxido Nítrico , Peptídeos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanogéis , Proteínas de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Células RAW 264.7 , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Pharm ; 16(9): 3977-3984, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31306580

RESUMO

Integrin αvß3 is a cell adhesion molecule involved in the progression and invasion of glioblastoma, making it an attractive target for the diagnosis of glioblastoma. Although some integrin αvß3 specific ligands, such as RGD and its mimetic peptides (Cilengitide), have been devoted in detecting glioblastoma, their clinical practices have been limited due to low specificity and affinity. Herein, we have identified a linear peptide RWrNK, containing an unnatural d-arginine (r), as the integrin αvß3-specific ligand. RWrNK shows high binding affinity to integrin αvß3 with a Kd value of 1.6 nM, which is 2-fold higher than Cilengitide (3.2 nM), a well-established integrin αvß3 ligand. In addition, RWrNK can not only rapidly transport in human glioblastoma U87MG cells but effectively label U87MG tumor spheroids, compared to Cilengitide, indicating that it possesses an ability to sensitively detect glioblastoma. Importantly, RWrNK can pass through blood-brain tumor barrier (BBTB) and selectively accumulate in orthotopic U87MG tumor within 2 h, allowing for imaging glioblastoma in vivo with high sensitivity and specificity. Overall, RWrNK has the great potential in theranostic applications for glioblastoma, in consideration of its high specificity and affinity for integrin αvß3.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Técnicas de Inativação de Genes , Glioblastoma/metabolismo , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfaVbeta3/genética , Ligantes , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Ligação Proteica , Venenos de Serpentes/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
20.
ACS Appl Mater Interfaces ; 11(22): 19799-19807, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31099550

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory syndrome-like illness with high pathogenicity and mortality due to the lack of effective therapeutics. Currently, only few antiviral agents are available for the treatment of MERS, but their effects have been greatly impaired by low antiviral activity, poor metabolic stability, and serious adverse effects. Therefore, the development of effective treatment for MERS is urgently needed. In this study, a series of heptad repeat 1 (HR1) peptide inhibitors have been developed to inhibit HR1/HR2-mediated membrane fusion between MERS-CoV and host cells, which is the major pathway of MERS-CoV-induced host infections. Particularly, peptide pregnancy-induced hypertension (PIH) exhibits potent inhibitory activity with IC50 of 1.171 µM, and its inhibitory effects can be further increased to 10-fold by forming a gold nanorod complex (PIH-AuNRs). In addition, PIH-AuNRs display enhanced metabolic stability and biocompatibility in vitro and in vivo and, therefore, effectively prevent MERS-CoV-associated membrane fusion. In summary, PIH-AuNRs represent a novel class of antiviral agents and have a great potential in treating MERS in the clinic.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ouro/química , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Nanotubos/química , Peptídeos/química , Peptídeos/farmacologia , Animais , Linhagem Celular , Dicroísmo Circular , Feminino , Humanos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...